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ABSTRACT 

We characterize the class of distribution functions qb(x), which are limits in the 
following sense: there exist a sequence of independent and equally distributed 
random variables {~n}, numerical sequences {ak}, {bk} and natural numbers 
{rig} such that 

k ~ o o  k = l  

and 
lim inf (nk/nk+l) > O. 

k"* oo 

1. Introduction 

Feller ([21 : 538) 

+oo 

(1.1) ~(t) = exp ~, 2-"+l(Cos(Zkt) -- 1), 
k = - - o o  

considers L6vy's example of  a characteristic function (of) 

which, while it is not stable, nevertheless has the curious property that 

(1.2) ~b2(t) - ~b(2t). 

We will deal here with distribution functions (df), whose cf 's  satisfy a somewhat 

more general identity than (1.2). It is the purpose of  this paper to investigate the 

role of  such df 's as limit distributions for normed sums of  independent, identically 

distributed random variables. 

It is well known that two classes of  df 's  play a central role in the theory of  limit 

distributions for such sums: the class of  infinitely divisible (i.d.) laws and the class 

of  stable laws. The formal definition and a detailed study of  the above classes are 

Received January 4, 1973 



2 D. MEJZLER Israel J. Math., 

given in [3]. We will just recall two problems, in connection with which these laws 

appear as limit distributions. 

Let (~,} be a sequence of independent random variables having the same df 

F(x); then the df of the sum s, = Y~= 1 Ck will be denoted by F*(x). Thus, the df of 

the normed sum (s, /a,  - b,), where an > 0 and bn are real numbers, is 

(1.3) F*(anX + anbn). 

L6vy [6], [3] proved that a df ~(x) can be the limit of a sequence of the form 

(1.3) if and ontyifi t  is stable. This problem was generalized by Khintchine. He 

showed [4], [3] that the totality of aU partial limits of sequences of the form 

(1.3) coincides with the class of i.d. laws. Thus, for every i.d. distribution ~(x) 

there exist a df F(x), numerical sequences (ak} and (bk}, and an increasing se- 

quence of natural numbers (nk} such that 

(1.4) lim F*~(akx + akbk) = O(X) 
k ~ O 0  

at every continuity point of the limit distribution O(x). 

The sequence (ng) is in general "sparse": the method of proof of Khintchine's 

result yields sequences (nk} which increase so rapidly that 

lim n k ~ (ci/n,) = O, 
k ~ o o  i = k + l  

where (ci) is a non-decreasing sequence. 

It is natural to ask by how much we cut down the totality of partial limits of 

sequences (1.3) if we restrict ourselves to sequences (rig} that are "dense" in some 

sense. For example, we can require the existence of the limit 

(1.5) lim (nk/nk+ l) = r, 
k---~ oo 

or, more generally, that 

(1.6) lira inf (nk/nk+l) = r, 
k--~ oo 

where r > 0. 

The df O(x) will be called a partial limit of rank r, or r-limit, if there exist 

{F(x), ak, bk, nk} such that the relations (1.4) and (1.6) hold. 

In this case F(x) is said to be partially attracted with rank r to the df O(x), or 

F(x) is said to belong to the r-attraction domain of r 

Let C, denote the set of all r-limit df's. Our aim is to characterize the class 
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C =  <.U~ C,. 
0 1 

In particular, we shall show that if we replace assumption (1.6) by the stronger 

condition (1.5), then neither the class of r-limit distributions nor their domain of  

partial attraction is diminished. 

It should be noted that an analogous problem was considered by us in con- 

nection with limit distributions for the maximal term of a variational series and 

we use here concepts and arguments that were employed in the papers [7], [8]. 

2. Characterization of the class (7, 

The cf's of the distributions F(x) and q)(x) will be denoted always by f ( t )  and 

q~(t), respectively. 

LEMMA 2.1. Let t~(x) be a proper df  satisfyin# (1.4). I f  the sequence of  the 

ratios {nk/nk+l} has a partial limit r, where 0 < r < i, i.e., {nk(,)} is a sub- 

sequence such that 

(2.1) lim (nk<Jnu~)+ t) = r, 
$'-e00 

then the following finite limits exist : 

lim (ak(~)/ak(s)+ 1) = a, 
S.-~ O0 

(2.2) lim (bk(~)ak(~)/ak(s)+ 1-- bk(~)+ Ing(~) [nk(~)+ 1) = b, 
$..e O 0 

where 

(2.3) 

and we have the identity 

(2.4) 

0 < a < l ,  

4~(at) exp (ibt) - d~'(t). 

PRZOF. Condition (1.4) may be written in the form 

(2.5) lira p~( t  l a k ) e x p ( -  itbk) = ~(t). 
k ~ a o  

Hence, because of  (2.1) we have also 

lim f"k'"(t/ak(s) + 1) exp (-- itbk(s)+ lnkts)/nk(s) + 1) ---- ~r(t) �9 
S.--~ 00 

From what we said in the Introduction about Khintchine's result, it is obvious, 

that ~b(t) is an i.d. cf. Therefore q~'(t) is the cf of  some proper df, which will be 

denoted by ~,(x). Thus the last equality can be rewritten as 
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* a lim F~s~ ( k(~)+ lX + ak(~)+ xbk(~)+ lnkC~)/nk(~+ t) = O,(X). 
$"~ 00 

But, by another theorem of Khintchine [5], [3], a sequence of  types can converge 

to at most one proper type. Hence, juxtaposing the last equation with (1.4), we 

conclude immediately that the df's O(x)and Or(x) must belong to the same type. 

In other words, there exist constants a > 0 and b such that 

This proves (2.4). It is easy to see that these constants are the limits (2.2). Since 

4~(t) is i.d., ~(t) # 0. Supposing that a = 1, we would have by (2.4) that [ 4~(t) 11 - '  -~ 1, 

which is impossible, since 0 < r < 1 and O(x) is a proper dr. Since [ q~(t) l < 1, 

again by (2.4) we would have I ~(at) I > I~(t) 1, and hence, for every t and natural 

n, also [~(Ol~[~(t/a")J. Therefore, supposing a > 1 and passing to the 

limit for n ~ o% we would have ] 4 (t) I >__ h = 1 for every t. But this is im- 

possible, since O(x) is a proper df. Thus inequalities (2.3) are proved. 

LEMMA 2.2. Let (2.5) hold for some {nk, ak, bk}, where nk(nk+l >-- nk + 1)are  

positive numbers, not necessarily integers. Then there exist b'k such that (2.5) 

holds for {Ink], ak, bk} (Ink] is the inteoral part of nk). 

PROOF. Indeed, on raising both sides of  (2.5) to the power [rig]/n k one obtains 

the required result with b~ = bk[nk]/nk" 

A characteristic property of  the class Cr(0 < r < 1) is given by the following 

THEOREM 2.1. A df  ~(x) belongs to the class C,(0 < r < 1) i f  and only if  its 

cf q~(t) has the following property: 

There exist constants a = a(r) and b = b(r) such that the identity (2.4) holds. 

PROOF. Since each improper df  belongs ~o each C, and satisfies condition (2.4), 

we may assume that q~(x) is a proper dr. 

The necessity of  (2.4) is proved by Lemma 2.1. Let the cf 4~(t) satisfy condition 

(2.4). By iterating this relation n times we get the identity 

(2.6) dp(a"t) exp a~r,-~ - 1 - ~"(t), 

which is valid for every natural n. Hence, q~'"(t) is a cffor  every n. Since 0 < r < 1, 

each positive number ,l can be represented in the form 

2 = ~ k,r", 
n----1 
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where k, are non-negative integers. On the other hand, the product o fc f ' s  and the 

limit of  a sequence of cf's are cf's. Thus we conclude that if  a cf ~b(t) has the 

property (2.4), then ~ba(t) is a cf for each 2 > 0 and, therefore, q~(t) is i.d. 

Now, let {4,} be a sequence of  mutually independent random variables having 

the same df F(x) = ~(x). Let us denote 

Vk = r - k ,  ak = a - k ,  flk = _ __b k-1 
r s=O 

Then by (2.6) we get 

since f ( t )  = c~(t). 

(a  /r)~, k = 1, . . . .  

fvk(t /ak)exp(-- itflk ) = c~(t), 

It follows from Lemma 2.2 that the sequence {ilk} can be replaced by an ap- 

propriate sequence {bk} in such a way that we get (2.5) with 

n~ = [vk]  = [ r - k ] .  

Since this (nk) satisfies condition (1.5), the sufficiency of (2.4) is proved. 

Let us note the following propositions that follows immediately from the above 

arguments: 

COROLLARY 2.1. Replacing assumption (1.6) by (1.5) does not change the 

class C,. 

COROLLARY 2.2. Each df  f rom C, is attracted by itself with rank r. 

It is natural to denote the class of all i.d. df 's by Co. For each i.d. df ~(x) let us 

denote by R(~) the set of  ranks r (0 < r < 1) for which ~(x) is an r-limit. By our 

assumption about ~(x) the set R(qb) is not empty. It is easy to see that this set 

has a maximum, which will be called the maximal  rank of partial attraction of the 

df  dp(x) and denoted by ro: 

ro = ro(~) = max R(~). 
r 

It can be shown (cf. [7], [8]) that the set R(~) is uniquely determined by its 

maximum ro: 

THEOREM 2.2. a) 0 < r o < 1 i f  and only i f  

R(~) = (r: r = r~  m -- 1 , . . . ,~} .  

b) r o = 1 i f  and only ifR(dp) = [0,1]. 
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I f  R (~)  contains two numbers  such that the ratio o f  their logari thms is ir- 

rational,  then r o = 1. 

It follows from the definition of  C, that C1 = Ao__,_~l C,. By Theorem 2.1 it 

can be shown that C1 coincides with the class of  stable laws. However, we can also 

prove this fact bypassing the formal definition of  the stable laws, and proving a 

somewhat stronger proposition: 

THEOREM 2.3. I f  a dfF(x)  is par t ia l ly  at tracted to the dfO(x)  with the rank  

r = 1, then F(x)  belongs to the ( f u l l ) d o m i a n  o f  attraction of  tD(x). 

PROOF. Let us suppose that (2.5) holds, where 

lira (n k/nk+l) -- 1. 
k " ~  o o  

Then after some simple transformations we conclude that for every t 

lira f"~ +,-n~ (t/a~) exp ( -  itbk(nk+ 1/rig -- 1)) = 1. 
k"* oo 

Since If(t)] < 1, we get also 

lim [f~(t/ak)[ = 1 
k ~ c o  

uniformly in s, 0 <_ s <_ nk+ 1 -- hR. Therefore, ([3, Th. 3, p. 57]) there exist numbers 

flks (k = 1, " ' ,  ; 0 <- s <- nk+ l -- nk) such that for each t 

lim f ' ( t . /ak) exp ( -  itflk,) = 1. 
k ~ c o  

On the other hand, every natural number n (n ~_ nl) can be represented in the 

form n = n k + s(k ,n) ,  where 0 ~ s = s(k ,n)  < nk+l -- nk. 

Let us supplement the initial sequences {an} and (bn} by putting 

a n = a k ,  b n = b k + f l k ~  for n k <= n <=rig+ 1. 

Then it is easy to see that 

lim fn( t  / a ~ ) e x p ( -  itb~) = ~p(t). 
n .-~ O0 

We conclude with a property of  the class C. 

THEOREM 2.4. The  class C does not contain any  lattice distribution.  

PROOF. It suttices to prove that if ~b(t) is a cf of  a proper df  from class C, then 

l~b(t)[ < 1 for t ~ 0. Indeed, suppose that for some t o ~ 0 we have l~b(to)[ = 1, 

where ~b(t) satisfies the condition (2.4). By (2.6) we would have also 
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I ~P(anto)[ = I q~(to) l'" = 1 

for every natural n. Denoting t, = anto, n = 1,..., we would have lim~_.~ t, = 0, 

since 0 < a < 1, and also I ~,(t.)[ = 1 for every n. But this is inconsistent with 

the assumption that qb(t) is the cf of  a proper df. (I-3, Th. 2, p. 56]). 

3. Remarks about the domain of partial attraction of distributions from the class C 

A sequence {nk} which satisfies condition (1.6) may contain no subsequence 

{nk(~)} such that 

lim (nk(~)/nk(~+l!) > O. 
~ -.~ o o  

Nevertheless, it turns out that conditions (1.5) and (1.6) are also equivalent in the 

definition of  the domain of  partial attraction (with positive rank) of distributions 

from C. Moreover, the following theorem holds: 

THEOREM 3.1. I f  F(x) and ~(x)  are df's such that for  some r (0< r < 1) and 

{nk, ak, bk} relations (1.4) and (1.6) hold, then for  every r in R(c~) there exist 

{nk, ak, bk} such that (1.4) and (1.5) hold. 

PROOF. Let r o be the maximal rank of  partial attraction of the df ~(x), which 

is assumed to be proper. By Theorem 2.2 it is enough to show that under our 

conditions there exist {~k, ak, bk} such that for every t 

(3.1) lim f ~ ( t  /tik)exp(-- itbk) = c~(t), 
k-*oo 

where 

(3.2) lim (n,/nk§ = ro. 
k-~oo 

Let us consider two cases. 

CASE I. 0 < ro < 1. By Theorem 2.1, ao (0 < ao < 1) and bo exist such that 

(3.3) dp(aot)exp(ibot ) - e~'~ t). 

Let s be an arbitrary natural number. Denote 

(3.4) n~s = n~ro ~, ak~ = a~ao ~, 
S - - 1  

bk, = bka~o/r~o -- (bo/ro) Z (ao/ro) i. 
j = 0  

Then, because of (3.3) and (2.6) it is easy to see, that if  we have (1.4) or, what is 

the same, (2.5), then also 
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(3.5) lim f"~ ~(t /aks ) exp (-- itbk~) = c~(t). 
k"* oo 

By Lemma 2.1, the df  ~(x) is r-limit for every r (0 < r < 1), which is a partial 

limit of  the sequence {nk Ink§ 1}. On the other hand, by Theorem 2.2 (a), there exists 

a natural number m such that for the value r appearing in (1.6) we have 

r = r~'. Therefore, the set of  partial limits of  the sequence {nk/nk+l} does not  

include any other number except 

m 
1 ,  r 0 ,  r 0  2 , . . . , r  0 ----- r .  

It follows from here (cf. [8]*) that there exists a subsequence {nk(~) ) such that 

m lim inf (nk(s)lnk(s+l)) < lim sup (nk(s)lnk(s+l)) < r o. r ~ r o ~  
dt..~ oo $ --t. oo 

Therefore, in order to simplify notation we may assume that for every k the 

original sequence {nk} satisfies the inequalities 

(3.6) 

Consider the intervals 

Ap 

r~ ++ < (n, /n ,+, )  < r+o. 

= I-r~ +~, r~-'~), p = 1, . . . ,m. 

By (3.6) we have for every k an integer p = p(k) such that 

(n~ Ins + ~) e A. .  

Let us supplement the sequence {nk} in the following way: if  p(k) > 2, then we 

insert between n k and nk+l(P--1)  numbers nks of  the form (3.4), where 

s = 1 , . . . ,p  - 1. I f  we put nk = nkO, nk+l = nkp, then, in view of  (3.6) and the 

definition of  nk,, we conclude that for every k and s (0 < s < p - 1) we get 

re o < < ro +. 

Thus we obtain an increasing sequence, which will be denoted by {nk}" We have 

obviously 

(3.7) ro t < (~k/~k+l) < r~o. 

Analogously we supplement the sequences {ak} and {bk} according to (3.4) and 

denote the supplemented sequences by {dk} and {bk}. Since (3.5) is valid for everys, 

we will have (3.1) for our {t~k, dk, bk}. Since we are considering the case 0 < r 0 < 1, by 

Theorem 2.2(a) and inequalities (3.7) we conclude that (3.2) holds. By Lemma 2.2 

* I take the opportunity of correcting a misprint: inequalities (3.8) on p. 211 [8] must be 
written as rio < q < 1. 
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we can modify the definition of  the sequences {gk} and {bk} preserving the 

equations (3.1) and (3.2), so that the nk will be natural numbers. 

CASE II. ro = 1. In this case the df  ~(x) is stable and the canonical rep- 

resentation of  its cf tk(t) has the form 

(3.8) log q ~ ( t ) = i , t - c l t l ~ ( l + i f l - ~ o g ( t ,  oO), 

where e,/3, •, c are constants (0 < c~ < 2, [/31 < 1, c => 0) and 

tg -~-e, if e ~ 1, 
o 4 t , ~ )  = 

i 2 1 o g [  t], i f ~ =  1. 

Now, for every r (0 < r < 1) there exist a and b such that we have the identity 

(2.4). Using (3.8) one checks that the constants a, b and r are related by the 

equations 

~,(r - a), if ~ ~ 1, 
(3.9) r = a  ~, b = b ( r , a ) =  

~2c f la loga ,  i f ~ =  1. 

It follows from here that if we have (2.4) for some r, a and b, then for each number 

d > 0 we also have the identity 

dp(aq) exp ( itb(r d, ad)) = ? f  (t) 

(which can be regarded as a continuous analogue of  (2.6)). 

It can be shown (cf. I-8]) that, in view of  (1.6), for every q (0 < q < 1) there 

exists a subsequence (n;,} such that qr < (n'k/n[+ i) < q. Therefore, without loss 

of  generality, we can assume that 

(3.11) qa < (nk/nk+l) < q2, 

where 0 < ql < q2 < 1. 

Let us supplement the sequence (nk} by inserting between nk and nk+ 1 numbers 

rlkm , defined by 

(3.12) nkm = nk(nk+l[nk) m/k, m = 1 , . . . , k - 1 .  

By (3.11) the series ]~k~l n~ -1 converges and, therefore, k/nk ~ 0 and also 
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k/(nk+ ~ - n k )  -'+ 0 for k -+ oo. Hence, for sufficiently large k, we will have [nk,m+ 1] 

> [nk,,]. The sequence, supplemented in this way, will be denoted by {nk}. By 

(3.11) we have 

Hence we conclude that 

q~/k < (nklnk+t)~/k < ql/k. 

lim (n,/ng+l) = 1, 
k'-* co 

which coincides-- in  the present case - -wi th  (3.2). 

Let us supplement the sequences (ak} and {bk} by putting 

a~. -- ak(ak+ 1/ak)  talk , 

(b k + v)(nk+lak/nkak+l) " /k -  ~, if ~ ~ 1, 
(3.13) bk,, = 

L b k  2 m cfllog(ak/ak+l), if ~ = 1, 
zc k 

m = 1 , . . . , k -  1. 

The supplemented sequences will be denoted by {dR} and (bk}. 

In order to prove (3.i) we will show that each subsequence of  the sequence 

{fnk(t /dR) exp (-- it[~k)} 

contains a subsequence which converges to ~b(t). By (3.12), each subsequence 

(nkCs)} can be represented in the form 

~ = n~c~(nk(,~+ i In~(,)) "c~:k(~) 

Since I < m __< k - 1, we can assume the existence of the limit 

(3.15) lim (m(s)/k(s)) = d, 

where 0 < d < 1, and the limit (2.1), where 0 < r < 1 by (3.11). By Lemma 2.1, 

for this subsequence {~k(s)} the limits (2.2) also exist, and the values of a, b and r 

must satisfy the equations (3.9), since q~(t) is now the cf of  a stable law. In addition 

we have the identity (2.4). It is easy to see from (3.13), (3.14) and (3.15) that the 

subsequences {nk(s) , ak(~), bk(s)} a n d  (/~k(s), ak(s), bk(s)} are related by the following 

asymptotic equations for s ~ oo: 

(3.16) nk(~)/(rd~k(~)) "-* 1, ak(~)/(addk(~)) ~ 1, 

adbk(s) - -  r d D k ( s )  .--* b(r d, aa), 

where b(r, a) is given by (3.9). 
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On the other hand, since by assumption we have (1.4), obviously 

lim fn~t"'(t /ak(s) ) exp ( -  itbk(s) ) = dp(t). 
8"~ 00 

Hence, in view of (3.16), we get 

lira fnkm(t /dk(~ ) exp (-- itDk(~) ) 
8-*  00 

= dp'-d(adt) exp(itb(r d,a~)/rd). 

But for our a, b and r the identity (2.4) holds. Therefore, for each non-negative 

number d and, in particular, for the d which appears in (3.15), the identity (3.10) 

necessarily holds. This. in turn, means that the right-hand side of the last equation 

coincides with ~b(t). Thus (3.1) is proved. As we saw in the previous case, the 

passage to natural numbers ~k is accomplished with the help of Lemma 2.2, which 

completes the proof. 

Let us note the obvious proposition: 

COROLLARY 3.1. The domain of partial attraction with positive rank of a 

stable law coincides with its (full) domain of attraction. 

Let ~(x) be an i.d. df, ~b(t) its cf, 2 a positive number. The df whose cf is 

~b~(t) will be denoted by ~z(x). The notion of distribution type, which is essential 

in the theory of limit distributions for sums of independent random variables, 

will now be extended in the class of i.d. df's: 

Two i.d. df's O(x) and ~'(x) are said to belong to the same distribution "family"  

if there exist constants a > 0, b and 2 > 0 such that 

V(x)  - ~ ( a x  + b) 

(at every continuity point of the both sides of the equation). 

The following propositions are easily inferred from the proof of Theorem 2.1: 

COROLLARY 3.2. (a) I f  the df ~(x) belongs to the class Cr, then the entire 
fami ly  r belongs to C,. 

(b) I f  an i.d. dfF(x) belongs to the r-attraction domain of the df O(x), then the 
entire family F is contained in the r-attraction domain of each df belonging to 
the family  ~. 

It is easy to prove the following proposition (cf. [8, Th. 4.1]): 

THEOREM 3.2. Let ~(x) and U/(x) be two proper i.d. df's and let F(x) be 

partially attracted by both of them. I f  F(x) is partially attracted by r or 

tF(x) with a positive rank, then r and tP(x) belong to the same family. 
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Theorems 2.2 and 3.1 show that the numerical value of  the limits (1.5) or (1.6) 

is not essential and the value r was introduced in order to facilitate the formulation 

of corresponding propositions. Indeed, for a given i.d. df ~(x) it is meaningful to 

speak of only two kinds of domains of partial attraction: those with "zero 

density" and those with "positive density". Let us denote by Dp(~) the entire 

domain of partial attraction of the df O(x), and by D + (~) those of positive density. 

Then, it is easy to prove by the previous theorem the following. 

THEOREM 3.3. For each proper i.d. df ~(x) we have 

Dp( O) - D+(~9) # f,?j. 

PROOF. It follows from Doeblin's [1] results that there exist "universal" 

df's that are partially attracted by every i.d. df. Let F(x) be such a universal dfand 

�9 (x) an i.d. df which does not belong to the class C so that D + ( T ) =  ~ .  

(For T(x) we can take the Poisson distribution, since as a lattice distribution it 

does not belong to the class C by Theorem 2.4.) Thus we have 

F(x) e D p(r and F(x) e D p( UL). 

It is easy to see that F(x) r D + (r Indeed, assuming the contrary, we would have 

by Theorem 3.2 and Corollary 3.2 that F(x)E D+(~2) too, which contradicts the 

choice of ~(x). Thus our proposition is proved. 

4. The canonical representation 

We now give a constructive characterization of the class C. 

THEOREM 4.1. (I) In order that the function r be the cf of a df ~(x) of 

class C, it is necessary and sufficient that its logarithm be representable in the 

form 

log r = iTt - T + e " ' -  1 
cO (4.1) 

+ f o ~ ( e " " - I  - ~  

where ~ and tr 2 real constants, and 

Hi(u) = h i ( log  I u I)/I u 1 (4.2) 
n2(u ) = - h2(log u)/u ~, 

itu \ 
1 T u 2 )  dill(u) 

l ~t-~Uu2)dH2(u), 

(U < 0), 

(U > 0), 

where ~ is a constant, 
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(4.3) 0 < ~ < 2 ,  

and hi(x) and h2(x) are bounded, non-neoative functions defined in ( -  0% oo ), 

such that 

(I1) the ratio hg(x)/e ~x is non-increasing in 

(4.4) ( -  m, + oo), (k = 2, 2); 

(22) there exists a positive constant T such that 

(4.5) hk(X + T) - hk(X ) = 0, (k = 1, 2) 

(at every continuity point of the functions hk(X ) and hk(X + T)). 

In addition, if a 2 > O, then 

(4.6) hl(x ) = h2(x ) - 0. 

(12) The representation of the cf of a distribution from class C in the above 

form is unique in the following sense: 

(211) The constants ~ and a 2 are uniquely determined. 

(I12) The functions hi and h2 are uniquely determined i f  we identify any two 

functions of bounded variation in every finite segment that coincide at their 

continuity points. 

(II3) The constant ~ is uniquely determined if ~(t) is the cf of a proper, non- 

gaussian df (in the exceptional cases the value of ~ is not essential). 

(222) I f  T O is the minimal common period of the functions hi and h2, then the 

maximal  rank r o of partial attraction of the df ~(x) is given by 

(4.7) ro = exp ( -  eTo). 

In particular, if both the functions hi and h2 are constants, then r is a stable 

law and r o = 1. 

PROaF. (2). Necessity. Let q~(t) be the cf of  a df from class C. Thus, for some 

r, a and b (0 < r, a < 1) we have the identity (2.4). which we will write now in 

the form 

(4.8) log q~(at) + ibt = r log q~(t). 

2t is well known that the canonical representation of  an i.d. cf is given by (4.1), 

where ~ and a 2 are constants, and the functions Hl(u ) and H2(u) are non- 

decreasing in the intervals ( - ~ , 0 ) ,  (0, + oo) respectively, and satisfy the 

relations 
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(4.9) 

and 

(4.10) 

D. MEJZLER 

H i ( -  ~ )  = H2(+  oo) = 0 

S? fo dH l u + u2dH2 u < oo 
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o-2a2t 2 
log~b(at) = it(a~ + ~1 + ~2) 2 

(4.11) 

S( ) f( o itu d n l ( u / a )  + g , , _  1 . dn2(u /a ) ,  
+ ~ e ' t u - 1  l + u  ~ ~ l + u  2 

where 

S z3 (4.12) Vk = a ( 1 -  a 2) (1 + a2z 2) (1 + z2) dHk(z)' 

and the domain of  integration is ( -  ~ ,  0) for k = 1 and (0, + ao) for k = 2. 

Hence, by relations (4.1), (4.8) and (4.11) and the uniqueness of  the canonical 

representation of  an i.d. cf, we conclude that the functions Hi(u) and H2(u) must 

satisfy the identities 

r n t ( u )  =- n l ( u / a ) ,  (u < 0), 
(4.13) 

rn2(u)  - n z ( u / a ) ,  (u > 0), 

(where u and u ]a are continuity points of  the functions H1 and H2), while the 

constants a, b and r are connected by the equation 

(4.14) r(a - r) + b + Yt + ~2 = 0, 

Yl, Y2 being given by formula (4.12). In addition, if tr z > 0, it is also necessary 

that 

(4.15) r = a 2 . 

Let us consider the function Hi(u) .  Since it is non-decreasing, it follows from 

(4.9) that Hi(u)  > O. We show that either n t ( u  ) - 0, or n l ( u  ) > 0 in ( -  ~ ,0 ) .  

Indeed, denote 

ft = sup {u : n l ( u  /a ) = 0, u < 0}. 

for every finite e > 0. 

This representation is unique if we identify any two non-decreasing functions 

that coincide at all of  their continuity points. 

It can be shown by simple manipulations that if  Iogqb(t) is of  the form (4.1) 

and a is a positive number, then log ~p(at) can be represented in the form 
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Assuming - oo < a < 0, we would have by (4.13) that 

Ht  - -0  = H 1 ( / 2 - 0 )  = 0, 

which contradicts the definition of fi, since a > ft/a. 

Let us consider the case H~(u) > 0 for u < 0. Denoting 

log r 
(4.16) ~ = I ~ '  T = - loga, 

(4.17) hi(x)  = e'XHl( - eX), ( -  oo < x < oo) 

15 

we get by (4.13) the necessity of  condition (4.5). Since the function H~ is monotone 

and is finite valued in ( -  oo,0), by (4.5) there exist positive numbers m and M 

such that 

(4.18) rn < hl(x ) < M 

(we can put, for example, m = e~X~ - eX~ 0), M = e~CXo+r)Hl(- e ~~ 0), 

where Xo is arbitrary). 

It follows from (4.17) that Ht  must be of  the form (4.2), where e > 0. Let us 

show that e < 2. For every e > 0 we have 

(4.19) f~ u aH (u) = f /   l(u2Hl(u)) + f :  - 2uH (u)au, 

where, under our conditions, the integrals on the right are positive. Therefore, in 
view of (4.10) we get 

[:~ uH (u)au l < oo, 

and, by (4.18), also 
ro 

rnJ_~ ]u]t-~du < 00, 

which proves the necessity of (4.3). 

The condition (4.4) follows from the monotonicity of  the function Hi(u).  

Quite analogously we establish the necessary form of  the function H2(u), where 

the value of  T in (4.5) for k = 2 must be the same as in the case/c = 1. 

The necessity of  the inequalities (4.3) as obtained from (4.10) by the assumption 

that at least one of  the functions H1 and H2 is not identically zero. However, by 

the definition (4.16) of  the parameter a, the relations (4.3) and (4.15) are incon- 



16 D. MEJZLER Israel J, Math., 

sistent. Hence it is obvious that if a 2 > 0, then the condition (4.6) is necessary. 

(II) Sufficiency of  our conditions is almost evident. Condition (4.4) guarantees 

the monotonicity of  the functions H1 and H2, while the boundedness of  the 

functions h t and h2 guarantees (4.9). By starting from (4.19) and the analogous 

equality for H2, it is easy to show that if 0 < a < 2 and hk(X) is bounded, then 

the functions H1 and H2 satisfy inequalities (4.10) for every 8 > 0. Thus the 

function q~(t), which is given by (4.1), is an i.d. cf. 

Let T be a common period of  hi and h2. Then it is easy to verify that q~(t) 

satisfies the identity (4.8) if we put, for example, 

r = e x p ( - a T ) ,  a = e x p ( - T ) ,  b =  - 7 ( a - r ) - 7 1 - ~ , 2 .  

REMARK 4.1. We saw above that either hk(x) --- 0 or hk(X) > 0 in ( -  oo, oo). 

I f  hk(x ) > 0, then condition (4.4) may be written in a more convenient form 

log hk(x2) -- log hk(Xt) <= a(x2 - xl) 

for x2 > x~. 

(II) The constants ~ and a 2 and the functions H 1 and H2 are uniquely determined 

(in the above-mentioned sense), since ~b(t) is i.d. Therefore, it remains to observe 

that the function hk(X) is uniquely determined (on the set of  its discontinuity 

points) by the function Hk(u) by means of  equation (4.2), and that the parameter 

a is uniquely determined if at least one of  the functions H1 or H2 is not identically 

zero. But this is obvious. 

Indeed, let us suppose, for example, that Hi(u)  ~ 0 and, therefore, H~(u) > O. 

Then, assuming 

H,(u) = h~(log[ul)/lul~= h~(log[ul)/lul ~* 

and putting 

g(x) = h~(x)/h~(x), fl = a* - a, 

we obtain the identity g(x) - e ~x, where g(x) is a periodic function; but this is 

possible only in the case, when fl = 0 and g(x) - 1, 

Let us also observe that the function hk(X ) is of  bounded variation in each 

finite segment, since it is a product of  two monotonic functions. 

( I l l )  Formula (4.7) is evident. It is well known that the expression (4.1) reduces 

to the canonical representation of  a stable law if the functions h 1 and h 2 appearing 

in (4.2) are constants. This fact follows also from the first part of  the present 

theorem and Theorem 2.2(b). 
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REMARK 4.2. It is easy to see by (4.1), (4.2) and (4.11) that the parameter 

appearing in (4.2) has the same value for all df s which belong to the same type. 

Therefore, it is meaningful to speak of  the "exponent"  ~ = ~(~), which cor- 

responds to a given type q) from the class C. 

EXAMPLE 4.1. Let us coasider the cf(1.1). It is obviously the c f o f a  distribution 

from C§ Keeping our notation, we have here a = r = �89 b = 0. In the canonical 

representation of  this cf  ? -- o .2 -- 0, 

(4.20) Hi(u) = 2 k i f  - 2  -k+l < u < - 2 -~, k = 0, • 1,-.-, 

H2(u) = - H i ( -  u), (u > 0). 

Since a = r, by (4.16) we have ~ = 1. Hence 

hx(x) = 2ke x, i f  - k log 2 < x < - (k - 1 )  log 2, k = 0 , •  1,... 

and an analogous expression holds for h2(x). Since To = log2 is the minimal 

period of  the functions hi and h2, it follows from (4.7) that the maximal rank 

of  partial attraction is r o -- �89 

The cf qb(t) of  the above example satisfies a particular form of  the identity (2.4), 

namely 

(4.21) ~(at) - ~y(t). 

The totality of  cf 's that satisfy an identity of  this special form is in a certain sense 

not closed. I f  a cf  with property (4.21) corresl~onds to the random variable 4, 

then the cf of  the random variable (a~ + b) cannot satisfy (4.21) if b ~ 0. Never- 

theless, it is of  some interest to find these types ~ of  the class C, which contain 

df 's whose cf 's satisfy the identity (4.21). An exhaustive answer to this question is 

given by the following proposition, which is a direct corollary of  Theorem 4.1: 

COROLLARY 4.1. Every type d~ of class C with exponent g=g(q)) # 1 contains 

df's whose cf 's satisfy an identity of the form (4.21). In order that the cf q~(t) of a 

df q)(x) of class C satisfy (4.21), where a = r (i.e., c~(qb) = 1), it is necessary and 

sufficient that 

(4.22) )'1 + )'2 = 0, 

where )'x and )'2 are defined by (4.12) and a = e x p ( -  T). 

For  the proof  it is enough to refer to (4.14). 

The condition (4.22) is obviously satisfied in our Example 4.1, because we have 

(4.20). 
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Finally, let us adduce an easily provable proposition concerning symmetric 

distributions of  class C. 

THEOREM 4.2. In order that a real cf ~b(t) be the cf of a law of class C, it is 

necessary and sufficient that it be representable in the form 

(4.23) ~b(t) = exp ( -  It] "h (log I t l)), 
where h(t) is a continuous, periodic, strictly positive function in ( - 0 %  oo), o~ 

is a constant, 0 < ~ < 2, and h(t) - constant if  o~ = 2. 

PROOf. Necessity. By assumption, ~b(t) is a cf which satisfies (2.4). Since 

~b(t) is i.d., continuous and ~b(0) = 1 > 0, it follows that q~(t) > 0 for every t. 

Hence, ~b(t) = [ ~b(t)] and therefore qS(t) must satisfy the special identity (4.21), 

which we rewrite now as 

(4.24) log ~(at) - r log qb(t). 

Let ~ and T be as in (4.16) and denote 

h(t) = - e-~tlogdp(e:). 

Then by (4.24) we conclude that h(t) is periodic, since h(x + T) ~ h(t). It follows 

from the definition of  h(t) that ~(t) is necessarily of  the form (4.23) for t > 0. 

But, since qb(t) is an even function, formula (4.23) is valid for all t. We conclude 

from Theorem 2.4 that h(t) is strictly positive in ( -  0% oo). Since the quantity 0~ 

has the same meaning as in Theorem 4.1, the inequalities 0 < 0t < 2 and the case 

ct = 2 are clear. 

Sufficiency. If ~(t) is a cf of the form (4.23) and Tis the period of the function 

h(t), then, as is easily checked, q~(t) satisfies the identity (4.21) if we put, for 

instance, 

a = e x p ( - T ) ,  r = e x p ( - ~ T ) .  

The hypothesis of  the theorem concerning the properties of  the function h(t) 

are, in general, not sufficient in order that the expression (4.23) be the cf of  a df. 

Nevertheless, this theorem can be used to construct cf 's of  symmetric distributions 

from the class C, if we use appropriate tests for real cf's. As a test which fits well 

with the scheme (4.23), let us cite the well-known theorem of  P61ya [9]: 

If  the function ~b(t) is non-negative, even, continuous in ( -  0% oo), convex in 

( -  0% O) and (0, oo) and such that q~(O) = 1 and ~b(t) --* 0 as t ~ 0% then ~b(t) is 

the cf of  a df. 
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Since h(t) is bounded in ( -  oo, oo) and a > 0, for  every ~b(t) o f  the form (4.23) 

we have 4~(t) ~ 0 as t --, oo and qS(t) --, 1 as t ~ 0. The evenness is evident. Thus, 

in o rder  that  the expression (4.23) be a cf, it is enough to choose ce and h(t) so that  

~b(0 will be convex in ( -  oo, 0) and (0, oo). Fo r  instance, if ~b(t) is a t,vice differenti- 

able funct ion for  t # 0, then for the funct ion ~b(t) = e x p ( -  ~b(t)) we have dp"(t) > 0 

i f  ip'2(t) > ~,"(t). In particular,  we will have cb"(t ) > 0 i f  ~b"(t) < 0. 

EXAMPLE 4.2. Let  us take 

(sin t'~ [~h(log i t [). = �88 h(t)  = exp k- -~- - ] ,  r  = It 

Then it is easy to verify that  

- 1 6 4  
e 

$"(t) < < 0 for  t # 0. 

81tl TM 

Hence,  the function 

~b(t) = e x p ( - [ t ] l / 4 e x p (  ~inl~ ) )  

is the c f  o f  a symmetric  d f  o f  the class C. Here  ct = �88 T o = 2~r, ro = exp(-Tr /2) .  
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