ON A CERTAIN CLASS OF INFINITELY DIVISIBLE
DISTRIBUTIONS

BY
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ABSTRACT

We characterize the class of distribution functions ®(x), which are limits in the
following sense: there exist a sequence of independent and equally distributed
random variables {£,}, numerical sequences {a,}, {,} and natural numbers
{n,} such that

lim Prob i Z & — b <x}=®x)

k=0 A k=1
and .
lim inf (n,/n,.,) > 0.

k=*o0

1. Introduction

Feller ([2]: 538) considers Lévy’s example of a characteristic function (cf)
+ o
1.1) d)=exp X 27" '(cos(2¥) - 1),
k==w

which, while it is not stable, nevertheless has the curious property that

(1.2) (1) = $(20).

We will deal here with distribution functions (df), whose ¢f’s satisfy a somewhat
more general identity than (1.2). It is the purpose of this paper to investigate the
role of such df’s as limit distributions for normed sums of independent, identically
distributed random variables.

1t is well known that two classes of df''s play a central role in the theory of limit
distributions for such sums: the class of infinitely divisible (i.d.) laws and the class
of stable laws. The formal definition and a detailed study of the above classes are

Received January 4, 1973



2 D. MEJZLER Israel J. Math.,

given in [3]. We will just recall two problems, in connection with which these laws
appear as limit distributions.

Let {¢,} be a sequence of independent random variables having the same df
F(x); then the df of the sum s, = X;_, & will be denoted by F(x). Thus, the df of
the normed sum (s,/a, — b,), where 4, > 0 and b, are real numbers, is

(1.3) Fa(a,x + a,b,).

Lévy [6], [3] proved that a df ®(x) can be the limit of a sequence of the form
(1.3) if and only if it is stable. This problem was generalized by Khintchine. He
showed [4], [3] that the totality of all partial limits of sequences of the form
(1.3) coincides with the class of i.d. laws. Thus, for every i.d. distribution ®(x)
there exist a df F(x), numerical sequences {a,} and {b,}, and an increasing se-
quence of natural numbers {n,} such that

(1.4) lim Fy(ax + aby) = ®(x)

k » 00

at every continuity point of the limit distribution @®(x).
The sequence {n,} is in general ‘‘sparse’’: the method of proof of Khintchine’s
result yields sequences {n,} which increase so rapidly that

lim n, E (c;/n) =0,

k= x i=k+1
where {c;} is a non-decreasing sequence.
It is natural to ask by how much we cut down the totality of partial limits of
sequences (1.3) if we restrict ourselves to sequences {n,} that are ““dense’’ in some
sense, For example, we can require the existence of the limit

(1.5) lim (n, /1) = 1,

k=
or, more generally, that

(1.6) lim inf (n,[n.. ) =1,

k=
where r > 0.
The df ®(x) will be called a partial limit of rank r, or r-limit, if there exist
{F(x), a;, by, n,} such that the relations (1.4) and (1.6) hold.
In this case F (x) is said to bs partially attracted with rank r to the df ®(x), or
F(x) is said to belong to the r-attraction domain of ®(x).
Let C, denote the set of all r-limit df’s. Our aim is to characterize the class



Vol. 16, 1973 INFINITELY DIVISIBLE DISTRIBUTIONS 3
C= 0<U§1 C,.

In particular, we shall show that if we replace assumption (1.6) by the stronger
condition (1.5), then neither the class of r-limit distributions nor their domain of
partial attraction is diminished.

It should be noted that an analogous problem was considered by us in con-
nection with limit distributions for the maximal term of a variational series and
we use here concepts and arguments that were employed in the papers [7], [8].

2. Characterization of the class C,
The cf’s of the distributions F(x) and ®(x) will be denoted always by f(r) and
¢(1), respectively.

LeMMA 2.1. Let ®(x) be a proper df satisfying (1.4). If the sequence of the
ratios {n,[n.y,} has a partial limit r, where 0 <r <1, i.e., {n,} is a sub-

sequence such that

2.1 lim (g Mgye 1) = 1,

S ®
then the following finite limits exist:

lim (ays/ar(y+1) = 4,

@2 11_2‘0 (b k() [Hisr+1— sy + 1M M+ 1) = b,
where
2.3) 0<ax<l,
and we have the identity
2.4 d(ar)exp(ibt) = ().
Pr-oF. Condition (1.4) may be written in the form
@.5) lim £ (t]a)exp(= ith) = 9(0).

Hence, because of (2.1) we have also
lim f™(t faygy+ 1) €XP(— ithi(sy+ 1My [Py +1) = (1)
Fiud ]
From what we said in the Introduction about Khintchine’s result, it is obvious,
that ¢(f) is an i.d. cf. Therefore ¢'(¢) is the cf of some proper df, which will be
denoted by ®,(x). Thus the last equality can be rewritten as
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. *
lim Fnk(;)(ak(s)+ 1X + A+ 1D+ lnk(s)/nk(s)+1) = @,(x).

s~ w
But, by another theorem of Khintchine [5], [3],a sequence of types can converge
to at most one proper type. Hence, juxtaposing the last equation with (1.4), we
conclude immediately that the df's ®(x) and @,(x) must belong to the same type.
In other words, there exist constants a > 0 and b such that

) (" = b) = @,(x).

This proves (2.4). 1t is easy to see that these constants are the limits (2.2). Since
¢(1) is i.d., §(£)#0. Supposing that a =1, we would have by (2.4) that | ¢(1)|! "=1,
which is impossible, since 0 < r < 1 and ®(x) is a proper df. Since|¢()| <1,
again by (2.4) we would have | ¢(at)| 2 | $(f)|, and hence, for every ¢ and natural
n, also |@(f)| 2 | ¢(¢/a")|. Therefore, supposing a > 1 and passing to the
limit for n — oo, we would have lqﬁ(t)] = ¢(0)| = 1 for every ¢. But this is im-
possible, since ®(x) is a proper df. Thus inequalities (2.3) are proved.

LeMMA 2.2. Let (2.5) hold for some {n,, a,, b}, where n(n,, = n, + 1) are
positive numbers, not necessarily integers. Then there exist by such that (2.5)
holds for {[n.], ai, b} ([n,] is the integral part of n,).

Proor. Indeed, on raising both sides of (2.5) to the power [n,] /n, one obtains
the required result with b, = b,[n,]/n,.
A characteristic property of the class C(0 < r < 1) is given by the following

THEOREM 2.1. A df O(x) helongs to the class C,(0 < r < 1) if and only if its
cf (1) has the following property:
There exist constants a = a(r) and b = b(r) such that the identity (2.4) holds.

Proor. Since each improper df belongs to each C, and satisfies condition (2.4),
we may assume that ®(x) is a proper df.

The necessity of (2.4) is proved by Lemma 2.1. Let the cf ¢(f) satisfy condition
(2.4). By iterating this relation n times we get the identity

n—1

(2.6) d(am)exp ( ith ¥ a¥r" ! ) = ¢ (D),
s=0

which is valid for every natural n. Hence, ¢'"(f) is a cf for every n. Since 0 < r < 1,
each positive number A can be represented in the form

A= X k"
n=1
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where k, are non-negative integers. On the other hand, the product of ¢f’s and the
limit of a sequence of cf’s are cf’s. Thus we conclude that if a cf ¢(¢) has the
property (2.4), then ¢*(f) is a cf for each 1 > 0 and, therefore, ¢(?) is i.d.

Now, let {£,} be a sequence of mutually independent random variables having
the same df F(x) = ®(x). Let us denote

k
-k

-1
ve=r"% a =a" ﬁk=——~€— = (alr), k=1,

s

Then by (2.6) we get

[t fa)exp(— ith) = ¢(0),

since f(t) = ¢(1).
It follows from Lemma 2.2 that the sequence {f,} can be replaced by an ap-
propriate sequence {b,} in such a way that we get (2.5) with

n = [v] = [r ¥

Since this {n,} satisfies condition (1.5), the sufficiency of (2.4) is proved.
Let us note the following propositions that follows immediately from the above
arguments:

CoROLLARY 2.1. Replacing assumption (1.6) by (1.5) does not change the
class C,.

COROLLARY 2.2. Each df from C, is attracted by itself with rank r.

It is natural to denote the class of all i.d. df’s by C,. For each i.d. df ®(x) let us
denote by R(®) the set of ranks r (0 £ r < 1) for which ®(x) is an r-limit. By our
assumption about ®(x) the set R(®) is not empty. It is easy to see that this set
has a maximum, which will be called the maximal rank of partial attraction of the
df ®(x) and denoted by r,:

ro = ro(®@) = max R(®).
It can be shown (cf. [7], [8]) that the set R(®) is uniquely determined by its
maximum 74:
THEOREM 2.2. a) 0 < ry < 1 if and only if
R®)={rir=rfim=1,-,00}
b) ro = 1if and only if R(®) = [0,1].
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If R(®) contains two numbers such that the ratio of their logarithms is ir-
rational, then ry = 1.
It follows from the definition of C, that C; = [1,<,<, C,. By Theorem 2.1 it
can be shown that C, coincides with the class of stable laws. However, we can also

prove this fact bypassing the formal definition of the stable laws, and proving a
somewhat stronger proposition:

THEOREM 2.3. If a df F(x) is partially attracted to the df ®(x) with the rank
r = 1, then F(x) belongs to the (full) domian of attraction of ®(x).
ProOOF. Let us suppose that (2.5) holds, where

:im (M [neey) = L.

Then after some simple transformations we conclude that for every ¢

lim f™*'7" (t[a) exp (= ithy (s s [m — 1)) = 1.

k=~

Since [f(1)] < 1, we get also

lim |f*¢tfa)| =1
k=0

uniformlyins, 0 £ s < n,, , —n,. Therefore, ([3, Th. 3, p. 57]) there exist numbers
Bis(k=1,---,;0 £ 5 £ ne,y — n) such that for each ¢

lim f%(t/a)exp (= ithy) = 1.

k= oo

On the other hand, every natural number n (n = n,) can be represented in the
form n = n, + s(k,n), where 0 < s = s(k,n) < nq — 0.
Let us supplement the initial sequences {a,} and {b,} by putting

ay = &, b, = b + By, for n, < n = nyy.

Then it is easy to see that

lim f"(t/a,)exp(— ith,) = $(1).

n—oo
We conclude with a property of the class C.
THEOREM 2.4. The class C does not contain any lattice distribution.

Proor. It suffices to prove that if ¢(¢f) is a cf of a proper df from class C, then
[¢(t)l < 1for t # 0. Indeed, suppose that for some ¢, # 0 we have [¢(to)| =1,
where ¢(#) satisfies the condition (2.4). By (2.6) we would have also
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| p(a"t0)| = | d(to)|" = 1
for every natural n. Denoting ¢, = a*,, n = 1,---, we would have lim,, ., = 0,
since 0 < a < 1, and also ]qS(t,,)I = 1 for every n. But this is inconsistent with
the assumption that ¢(¢) is the cf of a proper df. ([3, Th. 2, p. 56]).

3. Remarks about the domain of partial attraction of distributions from the class C

A sequence {n,} which satisfies condition (1.6) may contain no subsequence
{n (s} such that
lim (ne/Migse1) > 0.
s§—r a0
Nevertheless, it turns out that conditions (1.5) and (1.6) are also equivalent in the
definition of the domain of partial attraction (with positive rank) of distributions
from C. Moreover, the following theorem holds:

THEOREM 3.1. If F(x) and ®(x) are df’s such that for some r (0< r < 1) and
{ny, ay, b} relations (1.4) and (1.6) hold, then for every r in R(®) there exist
{ny, ax, b} such that (1.4) and (1.5) hold.

ProoOF. Let r, be the maximal rank of partial attraction of the df ®(x), which
is assumed to be proper. By Theorem 2.2 it is enough to show that under our
conditions there exist {A, d,, b,} such that for every ¢

3.1 iim fM@|a)exp(— ithy) = (),
where
(3.2) lim (7, [fi+1) = ro.

k=

Let us consider two cases.

Case I. 0 < ry < 1. By Theorem 2.1, a4 (0 < a, < 1) and b, exist such that

3.3) d(agh)exp(ibyt) = ¢°(1).

Let s be an arbitrary natural number. Denote
(3.4) s = nkrgs, Qs = akags,
s—1
bys = b [rg — (boro) _20 (ao/ro).
j=

Then, because of (3.3) and (2.6) it is easy to see, that if we have (1.4) or, what is
the same, (2.5), then also
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(3.5) lim f™(t ja,yexp(— ithy) = $(1).
k=

By Lemma 2.1, the df ®(x) is r-limit for every r (0 < r < 1), which is a partial
limit of the sequence {n, [m; . }. On the other hand, by Theorem 2.2 (a), there exists
a natural number m such that for the value r appearing in (1.6) we have
r = rg. Therefore, the set of partial limits of the sequence {n, /n,.,} does not
include any other number except

2 m
19r0’r0;'”,r0 =r.

It follows from here (cf. [8]*) that there exists a subsequence {r,,} such that

r = rp = lim inf (nk(s) /nk(s+1)) < lim sup (ny, /nk(s+ 1y £ 7o
50

§=> 00

Therefore, in order to simplify notation we may assume that for every k the
original sequence {n,} satisfies the inequalities

3.6) < (nIny ) < rd
Consider the intervals
A, =[5 5, p=1,,m.
By (3.6) we have for every k an integer p = p(k) such that
(n/mee )€ A,
Let us supplement the sequence {n,} in the following way: if p(k) = 2, then we
insert between n, and n,,(p — 1) numbers n,, of the form (3.4), where

s =1,-,p— 1 If we put n, = my, n4y = ny,p, then, in view of (3.6) and the
definition of n,, we conclude that forevery kand s (0 < s < p — 1) we get

r?, < (Mgey) < 18

Thus we obtain an increasing sequence, which will be denoted by {7,}. We have
obviously

3.7 rg < (A [y y) < rg.

Analogously we supplement the sequences {a,} and {b,} according to (3.4) and
denote the supplemented sequences by {4,} and {b,}. Since (3.5) is valid for everys,
we will have (3.1) for our {7, d,, b,}. Since we are considering the case 0 <ry< 1, by
Theorem 2.2(a) and inequalities (3.7) we conclude that (3.2) holds. By Lemma 2.2

* ] take the opportunity of correcting a misprint: inequalities (3.8) on p. 211 [8] must be
written as rg <gqg<l
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we can modify the definition of the sequences {4} and {b,} preserving the
equations (3.1) and (3.2), so that the n, will be natural numbers.

Case II. ry, = 1. In this case the df ®(x) is stable and the canonical rep-
resentation of its cf ¢(z) has the form

t
3.9) log ¢(t) = iyt — clt] "(1 +ip Ww(t,az)),
where o, B,y,c are constants (0 < a < 2, [B| £ 1, ¢ = 0) and

tg -g—cx, if o # 1,
o(t,o) = »
L—n-logltl, if a =1.

Now, for every r (0 < r < 1) there exist @ and b such that we have the identity
(2.4). Using (3.8) one checks that the constants a, b and r are related by the
equations

Y(r - a)s if « # 1,
(3.9) r=a% b=b(ra) =

L?cﬁaloga, if o =1.

It follows from here that if we have (2.4) for some r, a and b, then for each number
d = 0 we also have the identity

$(a't) exp (itb(r*,a)) = ¢"(1)
(which can be regarded as a continuous analogue of (2.6)).

It can be shown (cf. [8]) that, in view of (1.6), for every g (0 < q < 1) there

exists a subsequence {n;} such that gr < (n;/n;,;) < q. Therefore, without loss
of generality, we can assume that

(3.11) g1 < (M [mesq) < g,
where 0 < ¢g; < ¢, < 1.

Let us supplement the sequence {n,} by inserting between n, and n, ., numbers
s defined by

(3.12) Mom = Mes 1 [M) ™5 m = 1,k — 1.

By (3.11) the series X, n; ' converges and, therefore, k/n, > 0 and also
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k[(n+y —n) = 0for k — co. Hence, for sufficiently large k, we will have [n, ., ]
> [n,,]. The sequence, supplemented in this way, will be denoted by {7,}. By
(3.11) we have

1/k

1k 17k
‘11/ < (g /ms) <‘12/-

Hence we conclude that

lim (n,/ngeq) = 1,

k= o0
which coincides—in the present case— with (3.2).
Let us supplement the sequences {a;} and {b,} by putting

Gy = Wi 1 [3)™
(by + ) (s 1@ My )™ =y, if @ # 1,
(3.13) bim = , _iﬂﬂl @ o o
k nkc 08 Ay [0y + 1), moe=l,
m=1,-,k—1.
The supplemented sequences will be denoted by {4} and {5,}.
In order to prove (3.1) we will show that each subsequence of the sequence
{f™(t[a)exp (- ithy)}
contains a subsequence which converges to ¢(f). By (3.12), each subsequence
{5} can be represented in the form
ey = Prgs(Miesy+1 / "k(s))m(s)/k(s)-
Since 1 £ m £ k— 1, we can assume the existence of the limit

(3.15) lim (m(s)/k(s)) = d,

where 0 £ d £ 1, and the limit (2.1), where 0 < r < 1 by (3.11). By Lemma 2.1,
for this subsequence {77} the limits (2.2) also exist, and the values of a,b and r
must satisfy the equations (3.9), since ¢(f) is now the cf of a stable law. In addition
we have the identity (2.4). It is easy to see from (3.13), (3.14) and (3.15) that the
subsequences {1, iy bicsy} a0d {Fisys Gy Drcsy} are related by the following
asymptotic equations for s —» oo:

(3.16) My [(FPFige) = 1, Gy (@) = 1,
adbk(s) - rd[)k(s) — b(rd, ad)’

where b(r,a) is given by (3.9).
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On the other hand, since by assumption we have (1.4), obviously

lim f™(t [ay ) exp (— ithy) = ¢(b).

Famde
Hence, in view of (3.16), we get

lim fﬁkm(t /dk(s)) exp(— itEk(s))

§2 0
= ¢"""(a%t)exp(ith(r%, a®) |r).
But for our a, b and r the identity (2.4) holds. Therefore, for each non-negative
number d and, in particular, for the d which appears in (3.15), the identity (3.10)
necessarily holds. This, in turn, means that the right-hand side of the last equation
coincides with ¢(#). Thus (3.1) is proved. As we saw in the previous case, the
passage to natural numbers 7, is accomplished with the help of Lemma 2.2, which
completes the proof.
Let us note the obvious proposition:

COROLLARY 3.1. The domain of partial attraction with positive rank of a
stable law coincides with its (full) domain of attraction.

Let O(x) be an id. df, ¢(¢) its cf, A a positive number. The df whose cf is
¢*(#) will be denoted by ®@,(x). The notion of distribution type, which is essential
in the theory of limit distributions for sums of independent random variables,
will now be extended in the class of i.d. df’s:

Twoi.d. df’s @(x) and ¥(x) are said to belong to the same distribution “‘family”’
if there exist constants ¢ > 0, b and A > 0 such that

Y(x) = ®,(ax + b)

(at every continuity point of the both sides of the equation).
The following propositions are easily inferred from the proof of Theorem 2.1:
COROLLARY 3.2. (a) If the df ®(x) belongs to the class C,, then the entire
family ® belongs to C,.
(b) If ani.d. df F(x) belongs to the r-attraction domain of the df ®(x), then the

entire family F is contained in the r-attraction domain of each df belonging to
the family ©.

It is easy to prove the following proposition (cf. [8, Th. 4.1]):

THEOREM 3.2. Let ®(x) and W(x) be two proper i.d. df’s and let F(x) be
partially attracted by both of them. If F(x) is partially attracted by ®(x) or
Y(x) with a positive rank, then ®(x) and ¥ (x) belong to the same family.
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Theorems 2.2 and 3.1 show that the numerical value of the limits (1.5) or (1.6)
is not essential and the value r was introduced in order to facilitate the formulation
of corresponding propositions. Indeed, for a given i.d. df ®(x) it is meaningful to
speak of only two kinds of domains of partial attraction: those with ‘‘zero
density>’ and those with “‘positive density’’. Let us denote by D,(®) the entire
domain of partial attraction of the df ®(x), and by D; (@) those of positive density.
Then, it is easy to prove by the previous theorem the following.

THEOREM 3.3. For each proper i.d. df ®(x) we have
D,(®) - D}(®) # .

Proor. It follows from Doeblin’s [1] results that there exist ‘‘universal”
df’s that are partially attracted by every i.d. df. Let F(x) be such a universal df and
W¥(x) an i.d. df which does not belong to the class C so that Dy (¥) = &.
(For W(x) we can take the Poisson distribution, since as a lattice distribution it
does not belong to the class C by Theorem 2.4.) Thus we have

F(x)e D,(®) and F(x)eD,(¥).
It is easy to see that F(x) ¢ D; (D). Indeed, assuming the contrary, we would have

by Theorem 3.2 and Corollary 3.2 that Fi (x)eD; (¥) too, which contradicts the
choice of W(x). Thus our proposition is proved.

4. The canonical representation

We now give a constructive characterization of the class C.

THEOREM 4.1. (I) In order that the function ¢(t) be the cf of a df ®(x) of
class C, it is necessary and sufficient that its logarithm be representable in the
form

. ot O/ i itu
IOg (i)(f) =iyt — T + f (er —-1- W)dHl(u)

© . it
+ J; (e""—l——I%)de(u),

(4.1)

where y and o’ real constants, and
(42) Hl(u) = hl(log ] u l)/l u ]a’ (u < 0)’
Hy(u) = — hy(logu) [u’, (u>0),

where « is a constant,
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4.3) 0<a<2

and h,(x) and h,(x) are bounded, non-negative functions defined in (— o0, 0 ),
such that

(I,) the ratio h(x)/e®* is non-increasing in

(I,) there exists a positive constant T such that
4.5) hx+ T)—h(x)=0, (k=12
(at every continuity point of the functions h(x) and h(x + T)).

In addition, if ¢*> > 0, then
4.6) hy(x) = h(x) = 0.

(IN) The representation of the cf of a distribution from class C in the above
Sform is unique in the following sense:

(I1,) The constants y and o* are uniquely determined.

(I1;) The functions hy and h, are uniquely determined if we identify any two
Sfunctions of bounded variation in every finite segment that coincide at their
continuity points.

(I13) The constant a is uniquely determined if ¢(t) is the cf of a proper, non-
gaussian df (in the exceptional cases the value of a is not essential).

(IIl) If T, is the minimal common period of the functions h, and h,, then the
maximal rank ry of partial attraction of the df ®(x) is given by

“@.7 ro = exp(— aTy).

In particular, if both the functions h, and h, are constants, then ®(x) is a stable
law and ry, = 1.

PrOOF. (I). Necessity. Let ¢(t) be the cf of a df from class C. Thus, for some
r,a and b (0 < r, a < 1) we have the identity (2.4). which we will write now in
the form

4.8) log ¢(at) + ibt = rlog ¢(¢).

It is well known that the canonical representation of an i.d. cf is given by (4.1),
where y and o? are constants, and the functions H,(u) and H,(u) are non-
decreasing in the intervals (— 0,0), (0, + o) respectively, and satisfy the
relations
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(4.9) Hy(= @) = Hy(+ ) = 0
and
(4.10) foudel(u) + J”udez(u) < ©

for every finite ¢ > 0.

This representation is unique if we identify any two non-decreasing functions
that coincide at all of their continuity points.

It can be shown by simple manipulations that if log ¢(?) is of the form (4.1)
and a is a positive number, then log ¢(at) can be represented in the form

2.,2,2
log p(ar) = it(ay + 71 + 72) = 5
4.11)
4] : 0 .
sy 1 _ ___lﬁ‘__.. fu__ 1 __l_t.L
+ J_w(e 1 T uz)dHl(u/a) + J (e 1 T )de(u [a),
where
3
= a(l — a2 2
(4.12) h=a(l—a )J O+ e+ zz)de(z),

and the domain of integration is (— 00,0) for k = 1 and (0, + ) for k = 2,
Hence, by relations (4.1), (4.8) and (4.11) and the uniqueness of the canonical
representation of an i.d. cf, we conclude that the functions H,(«) and H,(u) must
satisfy the identities

rH(u) = H,(u/a), (u <0),

rHZ(u) = HZ(u /a)’ (u > 0),

(4.13)

(where u and u /a are continuity points of the functions H, and H,), while the
constants a, b and r are connected by the equation

4.14) a-rN+b+y +9y,=0,

71, 72 being given by formula (4.12). In addition, if 6% > 0, it is also necessary
that

(4.15) r=at.

Let us consider the function H,(u). Since it is non-decreasing, it follows from
(4.9) that H,(u) = 0. We show that either H,(u) = 0, or H,(u) > 0 in (— 0,0).
Indeed, denote

a=sup{u:H(ula)=0, u <0}
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Assuming — ¢ < # < 0, we would have by (4.13) that
] _

which contradicts the definition of &, since @ > #/a.

Let us consider the case H,(u) > 0 for u < 0. Denoting

logr
(4.16) o —@, T = —loga,
4.17) hi(x) = €H,(— €), (= 0 < x < o)

we get by (4.13) the necessity of condition (4.5). Since the function H, is monotone
and is finite valued in (— 0,0), by (4.5) there exist positive numbers m and M
such that

(4.18) m<h()sM
(we can put, for example, m = e®™°H,(— e** T+ 0), M = *®*Dg (— - (),
where x, is arbitrary).

1t follows from (4.17) that H, must be of the form (4.2), where o > 0. Let us
show that a < 2. For every ¢ > 0 we have

(4.19) fo u*dH,(u) = J.o dw?H,(w)) + fo — 2uH ,(u)du,

- - —e

where, under our conditions, the integrals on the right are positive. Therefore, in
view of (4.10) we get

0
lf uH,(u)du ] < 0,

and, by (4.18), also
0
mf |u|'"*du < oo,

which proves the necessity of (4.3).

The condition (4.4) follows from the monotonicity of the function H,(u).

Quite analogously we establish the necessary form of the function H,(u), where
the value of T in (4.5) for k = 2 must be the same as in the case k = 1.

The necessity of the inequalities (4.3) as obtained from (4.10) by the assumption
that at least one of the functions H, and H, is not identically zero. However, by
the definition (4.16) of the parameter «, the relations (4.3) and (4.15) are incon-
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sistent. Hence it is obvious that if 6% > 0, then the condition (4.6) is necessary.

({I) Sufficiency of our conditions is almost evident. Condition (4.4) guarantees
the monotonicity of the functions H, and H,, while the boundedness of the
functions h, and h, guarantees (4.9). By starting from (4.19) and the analogous
equality for H,, it is easy to show that if 0 < « < 2 and h,(x) is bounded, then
the functions H, and H, satisfy inequalities (4.10) for every & > 0. Thus the
function ¢(f), which is given by (4.1), is an i.d. cf.

Let T be a common period of k; and h,. Then it is easy to verify that ¢(f)
satisfies the identity (4.8) if we put, for example,

r=exp(—oal), a=exp(—~T), b=—y@a@a—-r)—y, -7,

REMARK 4.1. We saw above that either ki (x) = 0 or h(x) > 0 in (— o0, 0).
If h(x) > 0, then condition (4.4) may be written in a more convenient form

log hy(xz) — log hy(xy) < ax, — Xy)
for x, > x,.

(II) The constants y and 62 and the functions H, and H, are uniquely determined
(in the above-mentioned sense), since ¢(¥) is i.d. Therefore, it remains to observe
that the function h,(x) is uniquely determined (on the set of its discontinuity
points) by the function H,(u) by means of equation (4.2), and that the parameter
a is uniquely determined if at least one of the functions H, or H, is not identically
zero. But this is obvious.

Indeed, let us suppose, for example, that H,(u) # 0 and, therefore, H,(u) > 0.
Then, assuming

H,(u) = hy (log|ul)/|u]* = hilog|u])/]u]**
and putting
9 = M,  p=a*—q
we obtain the identity g(x) = €%, where g(x) is a periodic function; but this is
possible only in the case, when § = 0 and g(x) = 1.

Let us also observe that the function h,(x) is of bounded variation in each
finite segment, since it is a product of two monotonic functions.

(III) Formula (4.7) is evident. It is well known that the expression (4.1) reduces
to the canonical representation of a stable law if the functions k; and h, appearing
in (4.2) are constants. This fact follows also from the first part of the present
theorem and Theorem 2.2(b).



Vol. 16, 1973 INFINITELY DIVISIBLE DISTRIBUTIONS 17

ReMARK 4.2. It is easy to see by (4.1), (4.2) and (4.11) that the parameter o
appearing in (4.2) has the same value for all df s which belong to the same type.
Therefore, it is meaningful to speak of the “‘exponent’ a = a(®), which cor-
responds to a given type ® from the class C.

ExaMpLE 4.1. Let us consider the ¢f (1.1). It is obviously the cf of a distribution
from C,. Keeping our notation, we have here a = r = 1, b = 0. In the canonical
representation of this cf y = ¢* = 0,

H@=2"if 27" <u< =274 k=04+1,-,
H,(u) = — H,(— u), (u > 0).

(4.20)

Since a = r, by (4.16) we have a = 1. Hence
hy(x) = 2%, if —klog2 <x < —(k—1)log2, k=0,+1,-..

and an analogous expression holds for h,(x). Since T, = log2 is the minimal
period of the functions h; and h,, it follows from (4.7) that the maximal rank
of partial attraction is ry = 3.

The cf ¢(t) of the above example satisfies a particular form of the identity (2.4),
namely

4.21) d(at) = ¢'(D) -

The totality of c¢f’s that satisfy an identity of this special form is in a certain sense
not closed. If a cf with property (4.21) corresponds to the random variable ¢,
then the cf of the random variable (a¢ + b) cannot satisfy (4.21) if b # 0, Never-
theless, it is of some interest to find these types @ of the class C, which contain
df’s whose cf’s satisfy the identity (4.21). An exhaustive answer to this question is
given by the following proposition, which is a direct corollary of Theorem 4.1:

COROLLARY 4.1. Every type ® of class C with exponent a=a(®) # 1 contains
df’s whose cf’s satisfy an identity of the form (4.21). In order that the cf ¢(t) of a
df ®(x) of class C satisfy (4.21), where a = r (i.e., a(®)= 1), it is necessary and
sufficient that

(4.22) ntr2=0,
where y, and vy, are defined by (4.12) and a = exp(— T).

For the proof it is enough to refer to (4.14).
The condition (4.22) is obviously satisfied in our Example 4.1, because we have
(4.20).
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Finally, let us adduce an easily provable proposition concerning symmetric
distributions of class C.

THEOREM 4.2. In order that a real cf ¢(t) be the cf of a law of class C, it is
necessary and sufficient that it be representable in the form

(4.23) $(f) = exp(— |t| *h(log| t])),

where h(t) is a continuous, periodic, strictly positive function in (— o0, 00), &
is a constant, 0 < a < 2, and h(t) = constant if a = 2.

PrROOF. Necessity. By assumption, ¢(t) is a cf which satisfies (2.4). Since
¢(t) is i.d., continuous and ¢(0) = 1 > 0, it follows that ¢(f) > 0 for every t.
Hence, ¢(f) = | ¢(1)| and therefore ¢(f) must satisfy the special identity (4.21),
which we rewrite now as

4.24) log ¢(at) = rlog ¢(®).
Let « and T be as in (4.16) and denote

h(t) = — e"*log ¢(€).
Then by (4.24) we conclude that h(f) is periodic, since h(x + T) = h(1). It follows
from the definition of h(f) that ¢(t) is necessarily of the form (4.23) for ¢t > 0.
But, since ¢(f) is an even function, formula (4.23) is valid for all t. We conclude
from Theorem 2.4 that h(?) is strictly positive in (— o0, 00). Since the quantity «
has the same meaning as in Theorem 4.1, the inequalities 0 < « < 2 and the case

o = 2 are clear.

Sufficiency. If ¢(¢f) is a cf of the form (4.23) and T'is the period of the function
h(f), then, as is easily checked, ¢(¢) satisfies the identity (4.21) if we put, for
instance,

=exp(—T), r=exp(—aTl).

The hypothesis of the theorem concerning the properties of the function h(z)
are, in general, not sufficient in order that the expression (4.23) be the cf of a df.
Nevertheless, this theorem can be used to construct cf’s of symmetric distributions
from the class C, if we use appropriate tests for real cf’s. As a test which fits well
with the scheme (4.23), let us cite the well-known theorem of Pélya [9]:

If the function ¢(f) is non-negative, even, continuous in (— oo, ), convex in
(— 0,0) and (0, o) and such that ¢(0) = 1 and ¢(f) ~ 0 as t — co, then §(1) is
the cf of a df.
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Since h(t) is bounded in (— o0, ) and « > 0, for every ¢(¢) of the form (4.23)
we have ¢(f) » 0 ast — oo and ¢(¢t) —» 1 as t — 0. The evenness is evident. Thus,
in order that the expression (4.23) be a cf, it is enough to choose « and A(t) so that
¢(¢) will be convex in (— 00, 0) and (0, 0). For instance, if Y(¢) is a twice differenti-
able function for t # 0, then for the function ¢(f) = exp(— ¥ (f)) we have ¢"(1) 2 0
if Y20 = Y'(d). In particular, we will have ¢"(r) = 0 if y"(r) < 0.

ExamprLE 4.2. Let us take

sin ¢

a=4, 1O=exp (). w0 = |i[ndog] ).

Then it is easy to verify that
e -1'64
Y'(H) £ — ———— <0 fort #0.
8 I t l7/4
Hence, the function

sin log |t
(1) = exp (— |£]'* exp (T))
is the cf of a symmetric df of the class C. Here a = 4, Ty = 2=x, ry = exp(—n/2).
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